
Login : Jurnal Teknologi Komputer
ISSN : 2302-9692 (print) | 2723-8695 (online)
Vol. 18, No. 02, 2024, pp. 127-132

 http://login.seaninstitute.org/index.php/Login  127

Journal homepage: http://login.seaninstitute.org/index.php/Login

Analysis of Cryptographic Utilization with Merkle-Damgård

Algorithm

Peronika Ulianti Nainggolan1, Dennis Afrilyans Manik2, Laurenzio Gratian A. Daeli3, Flory

E Bako4

Teknik Informatika, Fakultas Ilmu Komputer, Universitas Katolik Santo Thomas

Article Info ABSTRACT

Keywords:

Cryptography, Merkle-Damgård,

Hash Functions, Data Security,

Digital Signatures

 Cryptography plays an important role in data security, especially in

authentication and digital signatures. One method that is widely used in

cryptographic hash functions is the Merkle-Damgård algorithm. This

algorithm allows the transformation of variable-sized data into a fixed hash

value through an iterative process with a compression function. This study

aims to analyze and understand the working mechanism of the Merkle-

Damgård algorithm and its implementation in a data security system. The

methods used in this study include the hashing process by dividing messages

into fixed blocks, adding padding, initializing the initial value, and iterating

the compression function. Testing was carried out with the example of the

plaintext "ABC" using a simple XOR operation. The results of the analysis

show that the Merkle-Damgård algorithm can produce unique and

deterministic hash values, making it effective in detecting data changes.

However, this algorithm also has weaknesses against collision attacks, which

is a challenge in its development. Therefore, a deep understanding of this

algorithm is essential in improving the security of modern hash functions.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Peronika Ulianti Nainggolan

Teknik Informatika, Fakultas Ilmu Komputer, Universitas Katolik Santo Thomas

1. INTRODUCTION

In cryptography, especially digital signature applications, hash functions play a crucial role in

ensuring data security, especially in authentication, digital signatures, and password

storage.(Patricia, 2024). One of the basic structures in the formation of a hash function is the Merkle-

Damgård algorithm, which is the foundation for various popular hash algorithms such as MD5, SHA-

1, and several variants of SHA-2.(Fajrin, 2023).

In the application context, Merkle-Damgård is used in various hash algorithms such as MD5

and SHA. Research shows that although this method is effective, it has a weakness related to padding

which can cause two different strings to be identical after the padding process. This poses a challenge

in maintaining the uniqueness of the output of the hash function.(Ariesanda, nd).

Further analysis shows that the implementation of Merkle-Damgård can affect data security,

especially in terms of data integrity and authenticity. This study emphasizes the importance of

evaluating the effects caused by the cryptographic process to ensure that the initial purpose of using

cryptography as a security technology is still achieved.(Indrayani et al., 2024).

The Merkle-Damgård algorithm allows a hash function to convert variable-sized data into a

fixed-length output, while ensuring that small changes to the input data will produce very different

hash values. This makes it an effective tool in detecting changes or manipulation of data. However,

http://login.seaninstitute.org/index.php/Login
https://creativecommons.org/licenses/by-sa/4.0/

 

Login : Jurnal Teknologi Komputer, Vol. 18, No. 2, 2024 : 127-132

128

behind its advantages, this algorithm also has weaknesses that can be exploited by irresponsible

parties, so understanding how this algorithm works and its security is very important.

Therefore, this report is prepared to discuss the basic concept of the Merkle-Damgård

algorithm, how it works, and examples of its implementation in cryptographic hash functions.

Through this discussion, it is expected to provide a deeper understanding of the role and challenges

of the Merkle-Damgård algorithm in the world of digital data security.

2. METHOD

The Merkle-Damgård algorithm is a construction method used to build a cryptographic

hash function from smaller compression functions. This algorithm is the basis for many

popular hash functions, such as MD5, SHA-1, and SHA-256.(Sitorus et al., 2024). The

Merkle-Damgård construction works by processing messages in fixed blocks using a

compression function in an iterative manner.(Tiwari, 2017). This allows efficient processing

of large data sizes and ensures deterministic properties of the hash function.
Working Principle of the Merkle-Damgård Algorithm

Merkle-Damgård works with the following steps:

a. Message Sharing

The input message M is divided into t blocks of fixed size, say 512 bits per block:

M=(M1,M2,...,Mt)M = (M_1, M_2, ..., M_t)

b. Padding

If the message length does not fit into a multiple of the block size, padding is added to ensure

that it does. Padding usually consists of a single "1" bit followed by several "0" bits until the

total length reaches a multiple of the block. In addition, the original length of the message is

also included in the padding to increase security.

c. Initialize Initial Values

The hashing process starts with a fixed initial value H_0, which is predetermined by the hash

algorithm used.

d. Compression Function Iteration

Each message block MiM_i is processed iteratively using a compression function f, which

combines the current block with the hash value of the previous iteration:

[H_i = f(H_{i-1}, M_i)]

Where:

(H_i): Temporary hash value at iteration (i).

(H_{i-1}): The hash value of the previous iteration.

(M_i): The (i)th message block.

(f): Compression function.

e. The final result

Afterall blocks are processed, the temporary hash value of the last iteration (H_t) becomes

the final hash output. [text{Hash}(M) = H_t]

3. RESULTS AND DISCUSSION
Here is an example of a cryptographic solution using the Merkle-Damgård algorithm with the

plaintext "ABC". For simplicity, we will use a simple compression function and simplified initial

values. The purpose of this example is to illustrate the iterative process of the Merkle-Damgård

algorithm.

a. Step 1 Plaintext Representation

The plaintext used is "ABC".

Table 1Convert each character into binary form based on its ASCII code:

character ASCII binary

A 65 01000001

B 66 01000010

C 67 01000011

Combine the binary representations of the plaintext: ABC = 01000001 01000010 01000011

 

Analysis of Cryptographic Utilization with Merkle-Damgård Algorithm (Peronika Ulianti Nainggolan,et.al)

129

b. Step 2 Block Distribution

The block size used is 8 bits per block. Each character in the plaintext is converted into a

separate block:

a. Block 1 (M₁) = 01000001 (A)

b. Block 2 (M₂) = 01000010 (B)

c. Block 3 (M₃) = 01000011 (C)

c. Step 3 Padding

The total length of the message is 24 bits, which is a multiple of 8-bit blocks. Therefore, no

padding is required.

d. Step 4 Initialize Initial Values

The initial value (H₀) used is 00000000 (8 bits).

e. Step 5 Compression Function

The compression function used is an XOR operation between the previous hash value and the

current message block:

Hi = Hi−1⊕ MiH_i = H_{i-1} \oplus M_iHi=Hi−1⊕Mi

f. Step 6 Compression Iteration

1. Iteration 1:

H₀ = 00000000

M₁ = 01000001

H₁ = H₀⊕M₁ = 00000000⊕01000001 = 01000001

2. Iteration 2:

H₁ = 01000001

M₂ = 01000010

H₂ = H₁⊕M₂ = 01000001⊕01000010 = 00000011

3. Iteration 3:

H₂ = 00000011

M₃ = 01000011

H₃ = H₂⊕M₃ = 00000011⊕01000011 = 01000000

g. Step 7 Output Hash

The final hash value (H₃) after all iterations is 01000000. In ASCII, this value represents the

character "@".The following is a table that represents the iteration process of the Merkle-

Damgard algorithm for the plaintext “ABC”:

| Iteration | (H_{i-1}) | (M_i) | (H_i = H_{i-1}⊕ M_i) |

|--------|----------------|--------|---------------------------------|

| 1 | 00000000 | 01000001 (A) | 01000001 |

| 2 | 01000001 | 01000010 (B) | 00000011 |

| 3 | 00000011 | 01000011 (C) | 01000000 |

Column Description:

1. Iteration: The (i)th step in the iteration process.

2. (H_{i-1}): The hash value of the previous iteration.

3. (M_i): The (i)th message block currently being processed.

4. (H_i): Temporary hash value resulting from the XOR operation ((oplus)) between (H_{i-

1}) and (M_i).

The final hash value ((H_3)) is 01000000, which in ASCII is the '@' character.

Final Hash: 01000000 (@)

Testing with Python

Shows the program interface for hashing with the Merkle-Damgård algorithm. The entered

text ("UNIKA") is converted into binary format and displayed as a bit representation. The binary text

is then divided into blocks for further hashing.

 

Login : Jurnal Teknologi Komputer, Vol. 18, No. 2, 2024 : 127-132

130

Figure 1. hashing process

The program displays the results of the block division and shows that no padding is needed

because the data length is already in accordance with the block size. The initial value is initialized as

the basis for subsequent hashing calculations.

Figure 2. the process of hashing the text "UNIKA"

Displays the results of hashing iterations using XOR operations on each block. The final

hashing result is displayed in binary and ASCII format as the final output.

 

Analysis of Cryptographic Utilization with Merkle-Damgård Algorithm (Peronika Ulianti Nainggolan,et.al)

131

Figure 3.Hashing Results

The hashing process begins by converting each character in the text into a binary

representation based on the ASCII code, then dividing it into 8-bit blocks. After that, the hashing

process is carried out by initializing the initial value (IV) as 00000000 and applying the XOR

operation iteratively to each binary block. Through a series of iterations, the hash value is updated

by XORing the previous result and the next message block. The final result is a hash value in binary

of 01011000, which when converted to ASCII becomes the character 'X'.

4. CONCLUSION

Merkle-Damgård Algorithmis one of the basic constructions in creating a cryptographic hash

function. This algorithm works by dividing the message into small blocks and processing them

iteratively using a compression function to produce the final hash value. The main advantage of this

algorithm is its ability to maintain cryptographic security properties such ascollision

resistanceAndpreimage resistance, provided that the compression function used has good security.

The Merkle-Damgård algorithm is the foundation for many popular hash functions, such asMD5,

SHA-1, and SHA-2.However, some Merkle-Damgård based algorithms have been shown to be weak

against collision attacks (collision attack), so that more modern hash functions are likeSHA-

3developed to improve security. The implementation of this algorithm inmanual calculations and

testing using Pythonshows that its iterative process can produce unique and deterministic hash

values, so it can be used in various data security applications.

REFERENCES

Ariesanda, B. (n.d.). Analisis dan Pengembangan Merkle-Damgård Structure.

Fajrin, A. M. (n.d.). Perbandingan Performa Kecepatan dari Algoritma Hash Function untuk Proses

Enkripsi Password (Vol. 4, Issue 4).

 

Login : Jurnal Teknologi Komputer, Vol. 18, No. 2, 2024 : 127-132

132

Indrayani, R., Ferdiansyah, P., & Koprawi, M. (2024). Analisis Penggunaan Kriptografi Metode AES

256 Bit pada Pengamanan File dengan Berbagai Format. 4(2).

https://doi.org/10.47709/digitech.v4i2.5457

Patricia, J. (2024). CYBER NOTARY DAN DIGITALISASI TANDA TANGAN. Grup Penerbitan CV

BUDI UTAMA.

Sitorus, N., Sharon, J., Sinaga, G., Samosir, S. L., Terapan, S., Rekayasa, T., Lunak, P., & Del, I. T.

(2024). Analisis Kinerja Algoritma Hash pada Keamanan Data: Perbandingan Antara SHA-

256, SHA-3, dan Blake2. Jurnal Quancom, 2(2).

Tiwari, H. (2017). Merkle-Damgård Construction Method and Alternatives: A Review. In Survey

Paper JIOS (Vol. 41, Issue 2).

Ariyus, D., & Wahidah, N. (2018). Analisis Perbandingan Keamanan Algoritma SHA-1 dan SHA-

256 pada Aplikasi Keamanan Data. Jurnal Ilmiah Teknologi Informasi, 12(2), 45-56. (t.thn.).

Kurniawan, Y., & Setiawan, E. (2021). Analisis Keamanan Algoritma SHA-256 terhadap Serangan

Tabrakan. Jurnal Ilmiah Teknik Informatika, 9(1), 34-42. (t.thn.).

Prasetyo, B., & Hidayat, R. (2019). Implementasi Algoritma MD5 untuk Integritas Data pada Sistem

Keamanan Informasi. Jurnal Sistem Informasi dan Teknologi, 7(3), 123-130. (t.thn.).

Rahardjo, B., & Susanto, A. (2017). Penerapan Fungsi Hash dalam Pengamanan Data Transaksi

Elektronik. Jurnal Informatika dan Komputer, 10(2), 89-97. (t.thn.).

Saputra, A., & Wijaya, D. (2020). Studi Komparasi Algoritma Kriptografi Hash SHA-1, SHA-

256, dan MD5. Jurnal Teknologi dan Sistem Informasi, 5(1), 78-85. (t.thn.).

